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A proof  is given that in a configuration interaction method the first-order 
interaction space contains at most only twice as many spin functions as the 
zeroth-order space. This allows for a dramatic reduction of the size of CI 
expansion. For most of the high-spin systems only two spin functions for 
each configuration are needed. 

Key words: Configuration interaction method--configuration selection--high- 
spin systems 

The concept of the Hartree-Fock interacting space, used by Bunge [1], Bender 
and Schaefer [2], and extended to a more general concept of the first-order 
interaction space (FOIS) by Liu and McLean [3], plays an important role in the 
selection of  functions in configuration interaction (CI) expansions. The length 
of this expansion for most open-shell systems excludes the possibility of making 
high-quality calculations without a clever method of selection of only the most 
important configuration functions (CFs). The concept of the FOIS is well justified 
by an analysis of the contributions of CFs based on the Reyleigh-Schr6dinger 
perturbation theory [3] and is frequently used as a selection scheme. 

In the usual classification of the CI configuration functions first a number of 
reference CFs is selected, spanning the zeroth-order N-particle space and covering 
all dominant terms in the final expansion. The space of CFs interacting through 
the Hamiltonian with the zeroth-order space is called the first-order interaction 
space. Obviously it includes singly and doubly excted CFs relatively to reference 
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configuration functions, but it does not include all components of the CFs 
corresponding to the excited configurations. Here a configuration means a subset 
of N orbitals (some of them appearing twice) of the total n-dimensional orbital 
set, while CF refers to a function constructed from these orbitals, a function 
properly antisymmetrized, being an eigenfunction of ~2 and Sz operators. Con- 
sidering the role of spin functions in FOIS we shall use the symmetric group 
approach (SGA) [4-9] to calculate matrix elements, because in this approach the 
spin and the orbital parts of CFs are well separated from the beginning. The 
same results may be derived within the unitary group approach theory, as 
described by Paldus [10] and Shavitt [11], but UGA graphs are more complicated 
than the spin diagrams used here. The readers more familiar with UGA techniques 
are encouraged to re-derive the result given below in an alternative way. 

In SGA one separates the spin and the orbital part of a spin-adapted CF writing 
it in the form: 

Ix, SM, k) = 3,([~)ISM, k)), (1) 

where A is the normalized symmetrizer, I x} is a product of orbitals appearing in 
configuration A, ISM, k) are the spin functions for the desired value of total spin 
S and spin projection M; finally k= 1, 2 , . . . f ( s ,  S) distinguishes independent 
spin functions. The numberf(s, S) of these functions for a given number of singly 
occupied orbitals s is given by the formula: 

(2S+ 1)s! 
f(s, S) - (2) 

((s/2) + S + l) [ ((s/2) - S)!" 

Thus there are f(s, S) spin functions associated with each orbital configuration. 
To appreciate how rapidly this number grows with the number of open shells, 
one should look at the branching diagram [12], Fig. t. For high-spin systems, 

s T 

3 

0 >5 ~ i ~ i ",If i I I I 

2 t, 6 8 10 

Fig. 1. Branching Diagram for 10 spins coupled to the total spin S = 2 
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even if s = 2S in the reference configuration functions, taking CFs corresponding 
to the doubly excited configurations results in 14 spin functions for quartets, 20 
for quintets, etc. No wonder that CI calculations on such systems, difficult to 
perform because of the complexity of high spin systems in the first place, are 
hard to find in the literature. Restricting ourselves to the FOIS we find in the 
above cases that only 2 spin functions are actually needed. We hope that this 
fact will stimulate CI calculations on the high-spin systems that are at present 
treated by less accurate methods (cf. [13-15]). 

We shall now prove the following theorem: 

If the number of spin functions associated with the reference configurations is 
f ( s ,  S) then, for the configurations doubly excited from these references, out of 
f ( s  + 4, S)  spin functions no more than 2f(s ,  S) belong to the first-order interaction 
space. 

Proof" First, we will identify 5 types of CF that may increase the number of open 
shells in a reference CF. Second, we will calculate matrix elements between each 
of these 5 types of CF and the reference, finding the spin functions that give 
non-zero elements, i.e. belong to the first order interaction space. 

Let's designate the open-shell orbitals (singles) in a given reference configuration 
by a l , a 2 , . . . ,  closed-shell orbitals (doubles) by dl, d2 . . .  and the unoccupied 
orbitals (virtuals) by vl, v2 . . .  Doubly excited configurations are made by 
replacing ala  2 o r  aid  I or did2 o r  d i d  I orbitals by a3a 4 or a3/) 1 or /)1/)2 or /)1'Ol 
orbitals in the reference configurations. Out of 16 configuration types which can 
thus be formed only 5 increase the number of open shells: 4 configuration types 
[a,dl ~ v, v2), [d, d2 ~ a3vl), [dld2~/91/9,) and ]did1 ~ 191192) add two open shells and 
one type of configuration, ]dl d2 ~ vl v2), adds four open shells. We have to calculate 
matrix elements between each of these 5 types of configurations and the reference 
state and check which of the f ( s  + 2, S) or f ( s  + 4, S) spin functions interact with 
the functions corresponding to the reference configuration. 

Let's assume the following order of orbitals in configuration h: first doubles in 
an arbitrary order, then virtuals (Vl < v2 if present) and then singles a~ < a2 . . . .  
We shall also assume that the spin functions are built according to the geneaologi- 
cal scheme [4, 12]. Therefore the paths in the branching diagram and the spin 
functions are in one-to-one correspondence and no confusion will arise if we 
shall talk about the interacting paths instead of interacting spin functions. 

In SGA matrix elements depend on the line-up permutations, bringing orbitals 
in the two configurations into maximum coincidence. We can easily find the 
line-up permutations for matrix elements between the CF types listed above and 
an arbitrary reference configuration. Consider first the element (dl ap ~ v~/)21/t]0). 
The orbitals in the two configurations appear in the following order: 

d2d2dldlala2a3 . . . ap_la p in 10) 

d2d2dlVlV2ala2. .. ap-2ap-1 in Idlap ~ /)1o2) (3) 

1 2 3 4 5 6 7 . . . p + 3 p + 4  positions of orbitals 
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where for simplicity we have not numbered the positions of the doubles which 
will not appear in our excitations. In this case there are 2 line-up permutations 
bringing the orbitals of the excited configuration into maximum coincidence with 
orbitals of  the reference: a cycle P1 = (56 . . .  p + 4 )  placing v2 at p + 4  position 
and moving al, . . . ,ap_l to the left, or P 2 = ( 4 5 . . . p + 4 ) ,  placing vl at p + 4  
position. The first permutation leads to (dl vllavv2) and the second to (dl v2lapVl) 
two-electron integral. According to [5, 7, 9] it is always enough to find the line-up 
permutations of singly occupied orbitals only. In the case of the (dl d2 ~ apv, l~] 0) 
element these line-up permutations are: P2 = (45 . . .  p + 4 )  and P3 = (3 4 . . .  p +4 ) .  
F o r  [ d l d 2 - ~  VlVl) and ]dldl~ vlv2) CFs reordering of the singles is not needed, 
P = / ,  so that only diagonal elements are different from zero. Therefore the spin 
FOIS for these configuration types is identical with zeroth-order spin space. 

For the first two types of configurations finding the interacting spin functions is 
reduced to the determination of non-zero matrix elements (SM, klPISM, l), where 
ISM, l) is a function belonging to the zeroth-order spin space (Fig. 2). The 
interacting functions may be found using the original method of Kotani et al. 
[4], but a method described in [16] is simpler in this case. The method can be 
used to evaluate the actual values of spin integrals and thus our matrix elements, 
but now we are only interested in determining which paths do interact with the 
reference one. Writing a cycle as a product of elementary transpositions (k k + 1): 

( 3 4 5 . . . p + 4 ) =  (34)(45) . . .  ( p + 3 p + 4 ) ,  (4) 

we can find all the interacting paths on the branching diagram using a simple 
rule [16]: the two path interact through (kk+ 1) if they differ at most in the k 
and k+  1 arcs, i.e. the paths must be the same except for / ~  in one and ~ /  
in the other. Spin functions corresponding to the reference state have a singlet 
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Fig. 2. Zeroth-order  spin space for S = 2, s = 6 (at least in one reference configuration six open shells 
must  be present) .  It is also spin FOIS for the configuration functions of Idl d 2 ~ vl vl) and Idl d 1 ~ v 1 v z) 
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Fig. 3. Spin FOIS for configuration functions of ]d, ap-+/21/22) and [dld2-+apVl) type. Instead of 
f(8,  2 )=20  functions only 2f(6, 2 )=  10 are needed 

pair at the position 1, 2 and 3, 4 i.e. they are of the form / N / N /  where only 
first five segments were drawn. Acting on any path chosen from the zeroth-order 
spin space with (p + 1 p + 2), (pp + 1) . . .  (56) transpositions we may produce only 
the paths belonging to the zeroth-order space. Permutations (45) and (34) (45) 
add a new possibility: they couple functions with a singlet pair at the position 
3,4 (path / N / N /  ) to functions with a triplet pair at this position (path 

/ ~ N  ). Thus FOIS consist of the functions with the singlet and the triplet 
at 3, 4 position, a total of 2f(s, S) functions (Fig. 3). 

Turning now to the case of I dl d2-+ vlv2) configuration type we find, that the two 
line-up permutations are in this case (23) and (123). The interacting paths may 
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Fig. 4. Spin FOIS for configuration functions of Idld2~ v~v~) type. Instead of f (10 ,  2) = 75 functions 
(Fig. 1) only 2f(6, 2) = 10 are needed 
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therefore differ only in the second and third arc, as shown in Fig. 4. Thus only 
2f(s, S) spin functions are needed at most for every doubly excited CF, and from 
the analysis given above we know which functions (paths) should be retained. 
This completes our proof. 

Singly excited configurations are in many cases unimportant (e.g. SCF reference 
states) and there are not many of them. This is a rather fortunate fact, because 
configurations of [d --, v} type give non-zero matrix elements (d -~ vl 10> (interact- 
ing through the exchange integrals) for all f (s  + 2, S) functions. However, in any 
practical case singly excited CFs should not create a serious problem. 

The simple procedure described here not always leads to the minimal FOIS [3], 
but usually is quite close to the optimum (cf. [17]). The number of interacting 
spin functions may be lowered by assuming more specialized spin-coupling 
schemes and orbital orderings. Therefore 2f(s, S) spin functions per CF should 
be treated as an upper limit. In the example given by McLean and Liu [3] and 
in the example described by Brooks and Schaefer [18] the reference state is a 
doublet with one open shell, while doubly excited configurations have at most 5 
open shells. Out o f f ( l / 2 ,  5) = 5 spin functions only 2f(1/2, 1) = 2 are interacting, 
as was indeed verified by these authors. 

Both the unitary group approach [10, 11, 19-21] and the symmetric group 
approach [5-9, 22] are very well suited to utilize the nice property of the FOIS 
proved in this paper. In UGA it is enough to delete certain paths from Shavitt's 
graph while in SGA one has to use the simplified branching diagrams, like those 
in Fig. 2-Fig. 4. Such diagrams are used in a systematic and practical way (the 
ordering of the orbitals assumed for the purpose of the proof given above is not 
useful in practice) in [22]. As results from [16, 22], the FOIS spin functions which 
are not present in the zeroth-order space introduce at most a factor +1/2 or 
+x/3/2 in the matrix element formulas. 
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